NEWS RELEASE
November 19th, 2012
Trading Symbols:
AMM :TSX, AAU : NYSE MKT
uww.almadenminerals.com

ALMADEN COMPLETES DRILLING FOR MAIDEN RESOURCE, HITS 18.00 METERS OF $6.6 \mathrm{G} / \mathrm{T}$ AUEQ ($6.36 \mathrm{G} / \mathrm{T}$ AU, 14.0 G/T AG) ON NORTHEAST EXTENSION

Almaden Minerals Ltd. ("Almaden" or "the Company"; AMM: TSX; AAU: NYSE MKT) is pleased to announce final drill results to be included in the Company's maiden resource estimate. With the results today 225 holes accounting for $81,971.03$ meters of drilling, all drilled since the discovery was made in 2010, will form the basis of the resource estimate. The exploration drilling program at Ixtaca is on-going. The results reported today demonstrate the continuity of the known mineralisation as well as the presence of high grades locally. Highlights from the holes released today include the following intercepts (a more complete list of intercepts is shown in the table below):

Hole TU-12-196	NORTHEAST EXTENSION SECTION 499+30N:
152.41 meters @	g / t gold and $12.1 \mathrm{~g} / \mathrm{t}$ silver ($0.7 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Including	39.66 meters @ $1.21 \mathrm{~g} / \mathrm{t}$ gold and $3.8 \mathrm{~g} / \mathrm{t}$ silver ($1.3 \mathrm{~g} / \mathrm{t}$ gold equivalent)
And	10.50 meters @ $3.11 \mathrm{~g} / \mathrm{t}$ gold and $5.1 \mathrm{~g} / \mathrm{t}$ silver ($3.2 \mathrm{~g} / \mathrm{t}$ gold equivalent)
And	4.40 meters @ $1.87 \mathrm{~g} / \mathrm{t}$ gold and $119.9 \mathrm{~g} / \mathrm{t}$ silver ($4.3 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-208	NORTHEAST EXTENSION SECTION 499+30N:
81.82 meters @ 0	gold and $6.0 \mathrm{~g} / \mathrm{t}$ silver ($0.6 \mathrm{~g} / \mathrm{t}$ gold equivalent)
39.40 meters @ 1	t gold and $113.8 \mathrm{~g} / \mathrm{t}$ silver ($3.7 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Including	6.25 meters @ $8.44 \mathrm{~g} / \mathrm{t}$ gold and $624.8 \mathrm{~g} / \mathrm{t}$ silver ($20.9 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-211	MAIN IXTACA ZONE SECTION 10+375E:
156.65 meters @	g/t gold and $28.6 \mathrm{~g} / \mathrm{t}$ silver ($1.2 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Including	13.80 meters @ $0.97 \mathrm{~g} / \mathrm{t}$ gold and $82.9 \mathrm{~g} / \mathrm{t}$ silver ($2.6 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-212	IXTACA NORTH ZONE SECTION 10+525E:
15.00 meters @ 0	tt gold and $40.8 \mathrm{~g} / \mathrm{t}$ silver ($1.4 \mathrm{~g} / \mathrm{t}$ gold equivalent)
17.05 meters @ 2	gold and $30.7 \mathrm{~g} / \mathrm{t}$ silver ($2.9 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-214	IXTACA NORTH ZONE SECTION 10+925E:
13.40 meters @ 0,	t gold and $215.2 \mathrm{~g} / \mathrm{t}$ silver ($4.8 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Including	2.50 meters @ $0.90 \mathrm{~g} / \mathrm{t}$ gold and $901.9 \mathrm{~g} / \mathrm{t}$ silver ($18.9 \mathrm{~g} / \mathrm{t}$ gold equivalent)
11.70 meters @ 0	g gold and $119.0 \mathrm{~g} / \mathrm{t}$ silver ($2.6 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-217	IXTACA NORTH ZONE SECTION 10+525E:
14.10 meters @ 1	/t gold and $87.1 \mathrm{~g} / \mathrm{t}$ silver ($3.0 \mathrm{~g} / \mathrm{t}$ gold equivalent)
5.80 meters @ 1.0	gold and $108.9 \mathrm{~g} / \mathrm{t}$ silver ($3.3 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-219	IXTACA NORTH ZONE SECTION 10+950E:
18.80 meters @ 2	/t gold and $4.4 \mathrm{~g} / \mathrm{t}$ silver ($2.4 \mathrm{~g} / \mathrm{t}$ gold equivalent)
Hole TU-12-221	NORTHEAST EXTENSION SECTION 500+00N:
41.60 meters @ 0	/t gold and $3.6 \mathrm{~g} / \mathrm{t}$ silver ($0.8 \mathrm{~g} / \mathrm{t}$ gold equivalent)
97.75 meters @ 1	tt gold and $10.1 \mathrm{~g} / \mathrm{t}$ silver (1.7 g/t gold equivalent)
Including	18.00 meters @ $6.36 \mathrm{~g} / \mathrm{t}$ gold and $14.0 \mathrm{~g} / \mathrm{t}$ silver ($6.6 \mathrm{~g} / \mathrm{t}$ gold equivalent)
And	10.75 meters @ $8.22 \mathrm{~g} / \mathrm{t}$ gold and $13.8 \mathrm{~g} / \mathrm{t}$ silver ($8.5 \mathrm{~g} / \mathrm{t}$ gold equiv

Hole \#	From (m)	To (m)	Interval (m)	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$	AuEq (g/t)	$\mathrm{AgEq}(\mathrm{g} / \mathrm{t})$	SECTION
TU-12-184	90.00	104.00	14.00	0.43	6.2	0.5	27	10925E
TU-12-196	21.34	173.75	152.41	0.46	12.1	0.7	35	49930N
including	21.34	61.00	39.66	1.21	3.8	1.3	64	
including	25.00	35.50	10.50	3.11	5.1	3.2	160	
including	135.00	139.40	4.40	1.87	119.9	4.3	213	
TU-12-196	185.00	189.80	4.80	0.27	32.4	0.9	46	
TU-12-196	205.00	240.00	35.00	1.58	11.5	1.8	91	
including	216.35	217.35	1.00	49.15	123.5	51.6	2581	
TU-12-196	354.25	358.25	4.00	0.35	8.4	0.5	26	
TU-12-201	21.34	94.00	72.66	0.34	17.4	0.7	34	49930N
including	21.34	24.50	3.16	1.58	6.6	1.7	85	
including	86.00	91.75	5.75	0.16	169.9	3.6	178	
including	86.00	87.25	1.25	0.24	618.4	12.6	630	
TU-12-201	143.00	155.70	12.70	0.14	39.7	0.9	47	
TU-12-201	198.10	203.05	4.95	0.11	9.6	0.3	15	
TU-12-201	209.80	245.85	36.05	0.27	15.1	0.6	29	
including	209.80	212.30	2.50	2.65	134.9	5.4	268	
TU-12-202	26.50	66.50	40.00	0.35	1.4	0.4	19	10375E
including	26.50	38.00	11.50	0.78	0.5	0.8	39	
TU-12-202	137.10	172.50	35.40	0.62	12.3	0.9	43	
including	139.10	145.10	6.00	2.57	35.4	3.3	164	
TU-12-202	249.30	260.80	11.50	0.10	16.7	0.4	22	
TU-12-204	27.43	61.00	33.57	0.40	2.0	0.4	22	49930N
TU-12-204	95.00	102.60	7.60	0.17	16.5	0.5	25	
TU-12-204	184.70	191.70	7.00	0.07	34.6	0.8	38	
TU-12-204	258.35	270.80	12.45	0.13	9.7	0.3	16	
TU-12-204	368.90	418.80	49.90	0.24	7.9	0.4	20	
including	368.90	375.70	6.80	0.57	14.9	0.9	43	
TU-12-204	423.80	428.30	4.50	0.26	4.4	0.4	18	
TU-12-207	135.20	161.10	25.90	0.27	11.3	0.5	25	10375E
TU-12-207	171.10	181.00	9.90	0.14	26.4	0.7	33	
TU-12-207	210.00	211.70	1.70	1.70	216.7	6.0	302	
TU-12-208	24.38	106.20	81.82	0.44	6.0	0.6	28	49930N
including	24.38	36.10	11.72	1.04	7.8	1.2	60	
TU-12-208	120.60	160.00	39.40	1.45	113.8	3.7	186	
including	128.60	134.85	6.25	8.44	624.8	20.9	1047	
including	128.60	131.10	2.50	19.75	1203.8	43.8	2192	
TU-12-208	172.00	233.80	61.80	0.24	11.8	0.5	24	
including	229.50	232.00	2.50	2.07	30.8	2.7	134	
TU-12-210	51.82	109.80	57.98	0.28	5.1	0.4	19	10925E
TU-12-210	120.00	148.00	28.00	0.15	54.3	1.2	62	
including	122.00	134.00	12.00	0.22	114.7	2.5	126	
TU-12-210	155.50	166.50	11.00	0.07	34.4	0.8	38	
TU-12-210	198.50	200.50	2.00	0.12	79.8	1.7	86	
TU-12-210	215.50	234.85	19.35	0.18	16.6	0.5	26	
TU-12-211	31.20	187.85	156.65	0.59	28.6	1.2	58	$10375 E$
including	70.70	84.50	13.80	0.97	82.9	2.6	131	
including	97.80	105.65	7.85	1.07	59.4	2.3	113	
including	129.85	142.40	12.55	1.38	53.3	2.4	122	
including	172.85	183.85	11.00	0.91	56.7	2.0	102	
TU-12-212	43.60	58.60	15.00	0.59	40.8	1.4	70	10525E
TU-12-212	67.70	84.75	17.05	2.27	30.7	2.9	144	
including	74.20	76.20	2.00	16.06	97.0	18.0	900	
TU-12-212	95.50	103.30	7.80	0.20	10.9	0.4	21	
TU-12-212	116.20	124.60	8.40	0.31	64.5	1.6	80	

Hole\#	From (m)	To(m)	Interval (m)	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$	AuEq (g/t)	$\mathrm{AgEq}(\mathrm{g} / \mathrm{t})$	SECTION
TU-12-213	5.49	11.00	5.51	0.33	1.3	0.4	18	10950E
TU-12-213	16.00	26.82	10.82	0.32	1.3	0.3	17	
TU-12-213	50.50	83.50	33.00	0.56	4.3	0.6	32	
induding	58.50	77.00	18.50	0.82	5.2	0.9	46	
TU-12-213	111.50	146.20	34.70	0.29	5.7	0.4	20	
TU-12-214	40.85	106.00	65.15	0.38	2.8	0.4	22	10925E
TU-12-214	181.10	201.70	20.60	0.13	31.3	0.8	38	
including	193.25	195.50	2.25	0.13	145.5	3.0	152	
TU-12-214	209.50	218.60	9.10	0.09	12.6	0.3	17	
TU-12-214	228.50	307.50	79.00	0.20	70.5	1.6	81	
-including	249.00	277.00	28.00	0.33	126.6	2.9	143	
including	261.60	275.00	13.40	0.45	215.2	4.8	238	
including	269.50	272.00	2.50	0.90	901.9	189	947	
including	286.50	298.20	11.70	0.20	119.0	2.6	129	
including	293.60	297.60	4.00	0.30	263.0	5.6	278	
including	301.50	305.00	3.50	0.29	74.2	1.8	89	
TU-12-215	70.30	111.60	41.30	0.54	3.8	0.6	31	50000N
TU-12-215	153.70	166.50	12.80	0.10	7.5	0.2	12	
TU-12-215	473.50	491.30	17.80	0.69	36.1	1.4	71	
including	476.50	488.30	11.80	0.92	50.3	1.9	96	
TU-12-215	509.45	554.15	44.70	0.26	12.4	0.5	26	
TU-12-217	43.90	58.00	14.10	1.27	87.1	3.0	151	10525E
including	49.20	49.70	0.50	34.20	2050.0	75.2	3760	
TU-12-217	64.00	112.10	48.10	0.08	9.5	0.3	14	
including	105.70	107.30	1.60	0.84	43.3	1.7	85	
TU-12-217	132.70	161.65	28.95	0.37	33.7	1.0	52	
including	142.00	147.80	5.80	1.08	108.9	3.3	163	
TU-12-218	39.01	91.00	51.99	0.57	3.5	0.6	32	10925E
induding	69.00	80.00	11.00	0.96	2.4	1.0	50	
TU-12-219	48.16	105.90	57.74	0.41	8.8	0.6	29	10950E
including	97.20	104.00	6.80	0.62	32.7	1.3	64	
TU-12-219	127.90	146.70	18.80	2.27	4.4	2.4	118	
including	135.25	135.75	0.50	78.40	14.4	787	3934	
TU-12-220	6.10	13.50	7.40	0.21	2.2	0.3	13	10950E
TU-12-220	56.00	108.00	52.00	0.52	7.1	0.7	33	
including	79.00	89.00	10.00	0.95	7.8	1.1	55	
TU-12-220	117.00	252.60	135.60	0.16	38.1	0.9	46	
including	183.50	187.60	4.10	0.18	110.8	2.4	120	
including	201.25	248.00	46.75	0.22	67.0	1.6	78	
including	204.75	207.75	3.00	0.48	151.8	3.5	176	
TU-12-220	264.57	276.76	12.19	0.16	26.2	0.7	34	
TU-12-221	71.70	113.30	41.60	0.68	3.6	0.8	38	50000N
including	73.20	78.10	4.90	2.62	5.2	2.7	136	
TU-12-221	409.50	507.25	97.75	1.49	10.1	1.7	85	
including	451.50	469.50	18.00	6.36	14.0	6.6	332	
including	451.50	453.50	2.00	7.01	25.7	7.5	376	
including	458.75	469.50	10.75	8.22	13.8	8.5	425	
TU-12-221	520.25	523.75	3.50	0.16	10.6	0.4	18	

J.D. Poliquin, Chairman of Almaden commented, "These new results show the continued expansion of the overall Ixtaca vein system. We are excited to be working towards our maiden resource. Since the discovery in 2010 of the Main Ixtaca Zone we have found the parallel Ixtaca North Zone, the perpendicular Northeast Extension (Chemalaco) Zone and widespread mineralisation in the volcanic units. All of these zones remain open and drilling is on-going to expand the resource beyond the boundaries set for the maiden resource, a snapshot of drilling results to date."

The Company currently has three drills operating on the Tuligtic project. Almaden plans to continue drilling operations throughout 2012. Below is a plan map, relevant sections and table of significant intervals which will be posted to the Company's website (ww.almadenminerals.com).

About the Ixtaca Property

The 100\% owned Ixtaca zone is a blind discovery made by the Company in 2010. The Main Ixtaca and Ixtaca North Zones of veining are thought to have a north-easterly trend. Holes to date suggest that the Main Ixtaca and Ixtaca North Zones are sub vertical with local variations. This interpretation suggests that true widths range from approximately 35% of intersected widths for a -70 degree hole to 94% of intersected widths for a - 20 degree hole. The drilling completed to date has traced mineralisation over 1,000 meters along this northeast trend. Based upon observations at surface and of core as drilling progresses, there seems to be a variety of veinlet orientations within the Northeast Extension Zone however overall the zone is currently interpreted to be dipping shallowly to the west and striking roughly north-south.

Mr. Norm Dircks, P.Geo., a qualified person ("QP") under the meaning of NI $43-101$, is the QP and project manager of Almaden's Ixtaca program and reviewed the technical information in this news release. The analyses reported were carried out at ALS Chemex Laboratories of North Vancouver using industry standard analytical techniques. For gold, samples are first analysed by fire assay and atomic absorption spectroscopy ("AAS"). Samples that return values greater than $10 \mathrm{~g} / \mathrm{t}$ gold using this technique are then re-analysed by fire assay but with a gravimetric finish. Silver is first analysed by Inductively Coupled Plasma - Atomic Emission Spectroscopy ("ICP-AES"). Samples that return values greater than $100 \mathrm{~g} / \mathrm{t}$ silver by ICP-AES are then re analysed by $\mathrm{HF}-\mathrm{HNO}_{3}-\mathrm{HCLO}_{4}$ digestion with HCL leach and ICP-AES finish. Of these samples those that return silver values greater than $1,500 \mathrm{~g} / \mathrm{t}$ are further analysed by fire assay with a gravimetric finish.

Blanks, field duplicates and certified standards were inserted into the sample stream as part of Almaden's quality assurance and control program which complies with National Instrument 43-101 requirements. Gold equivalent ("AuEq" or "Gold Eq.") and silver equivalent ("AgEq" or "Silver Eq.") values were calculated using silver to gold ratios of 50 to 1 . The ratio of 50 to 1 was used for the sake of consistency with past news releases. Intervals that returned assays below detection were assigned zero values. Metallurgical recoveries and net smelter returns are assumed to be 100% for these calculations.

About Almaden

Almaden is a well-financed (cash, gold inventory and equity investments totalling approximately $\$ 35.6 \mathrm{MM}$ as of July 4, 2012) mineral exploration company working in North America. The company has assembled mineral exploration projects, including the Ixtaca Zone and the Tuligtic project, through its grass roots exploration efforts. While the properties are largely at early stages of development they represent exciting opportunities for the discovery of significant gold, silver and copper deposits as evidenced at Ixtaca. Almaden's business model is to find and acquire mineral properties and develop them by seeking option agreements with others who can acquire an interest in a project by making payments and exploration expenditures. Through this means the company has been able to expose its shareholders to discovery and capital gain without the funding and consequent share dilution that would be required if the company were to have developed these projects without a partner. The company intends to expand this business model, described by some as prospect generation, by more aggressively exploring several of its projects including the Ixtaca Zone.

On Behalf of the Board of Directors

```
"Morgan Poliquin"
Morgan J. Poliquin, Ph.D., P.Eng.
President, CEO and Director
Almaden Minerals Ltd.
```

Neither the Toronto Stock Exchange (TSX) nor the NYSE MKT have reviewed or accepted responsibility for the adequacy or accuracy of the contents of this news release which has been prepared bymanagement.. Except for the statements of historical fact contained herein, certain information presented constitutes "forward-looking statements" within the meaning of the United States Private Securities Litigation Reform Act of 1995 and Canadian securities laws. Such forward-looking statements, including but not limited to, those with respect to potential expansion of mineralization, potential size of mineralized zone, and size and timing of exploration and development programs, estimated project capital and other project costs and the timing of submission and receipt and availability of regulatory approvals involve known and unknown risks, uncertainties and other factors which may cause the actual results, perfomance or achievement of Alm aden to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Such factors include, among others, risks related to intemational operations and joint ventures, the actual results of current exploration activities, conclusions of economic evaluations, uncertainty in the estimation ofmineral resources, changes in project parameters as plans continue to be refined, environmental risks and hazards, increased infrastructure and/or operating costs, labour and employment matters, and govemment regulation and pemitting requirements as well as those factors discussed in the section entitled "Risk Factors" in Almaden's Annual Information form and Almaden's latest Form 20-F on file with the United States Securities and Exchange Commission in Washington, D.C. Although Almaden has attempted to identify important factors that could cause actual results to differ materially, there may be other factors that cause results not to be as anticipated, estimated or intended. There can be no assurance that such statements will prove to be accurate as actual results and future events could differ materially from those anticipated in such statements. Almaden disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, other than as required pursuant to applicable securities laws. Accordingly, readers should not place undue reliance on forward-looking statements.

Blue highlighted sections contain holes announced in latest release. Please see sections for assay intervals.

Hole ID	From (m)	To (m)	Interval (m)	Gold (g/t)	Silver (g/t)	$\begin{gathered} \text { Gold Eq } \\ (\mathrm{g} / \mathrm{t}) \end{gathered}$
TU-11-065	26.00	126.80	100.80	0.6	46	1.5
including	26.00	74.78	48.78	1.0	77	2.5
including	43.60	68.00	24.40	1.7	134	4.4
including	49.80	59.80	10.00	3.1	199	7.0
TU-11-067	24.30	145.00	120.70	1.0	73	2.5
including	54.90	96.30	41.40	1.9	144	4.8
including	63.55	85.50	21.95	2.8	210	7.0
including	107.20	116.95	9.75	2.5	113	4.8
including	125.55	127.43	1.88	2.5	242	7.3
TU-12-202	26.50	66.50	40.00	0.4	1	0.4
including	26.50	38.00	11.50	0.8	0	0.8
TU-12-202	137.10	172.50	35.40	0.6	12	0.9
including	139.10	145.10	6.00	2.6	35	3.3
TU-12-202	249.30	260.80	11.50	0.1	17	0.4
TU-12-207	135.20	161.10	25.90	0.3	11	0.5
TU-12-207	171.10	181.00	9.90	0.1	26	0.7
TU-12-207	210.00	211.70	1.70	1.7	217	6.0
TU-12-211	31.20	187.85	156.65	0.6	29	1.2
including	70.70	84.50	13.80	1.0	83	2.6
including	97.80	105.65	7.85	1.1	59	2.3
including	129.85	142.40	12.55	1.4	53	2.4
including	172.85	183.85	11.00	0.9	57	2.0

[^0]Scale: 1:
4000
Date: 13-Nov-12

Hole ID	From (m)	To (m)	Interval (m)	$\begin{gathered} \text { Gold } \\ (\mathrm{g} / \mathrm{t}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Silver } \\ (\mathrm{g} / \mathrm{t}) \end{gathered}$	Gold Eq (g/t)
TU-12-123	52.25	293.40	241.15	1.1	59	2.3
including	67.70	72.70	5.00	1.0	131	3.7
including	172.90	202.35	29.45	3.2	136	5.9
including	226.60	240.50	13.90	2.6	132	5.2
including	264.30	270.18	5.88	3.0	117	5.3
TU-12-126	76.00	86.50	10.50	0.1	14	0.4
TU-12-126	121.00	148.15	27.15	1.2	92	3.0
including	132.30	139.48	7.18	3.4	247	8.3
TU-12-126	178.00	304.10	126.10	1.2	63	2.5
including	209.00	215.00	6.00	1.6	192	5.4
including	222.50	226.75	4.25	6.6	127	9.2
including	238.50	249.00	10.50	3.6	162	6.9
including	281.50	290.25	8.75	4.1	229	8.7
TU-12-126	321.50	331.40	9.90	0.9	3	1.0
including	32.00	46.25	14.25	1.7	95	3.6
TU-12-130	42.10	44.60	2.50	8.9	467	18.2
TU-12-130	53.50	71.00	17.50	0.4	140	3.2
including	55.45	55.95	0.50	6.3	3610	78.5
including	63.50	65.95	2.45	0.7	154	3.7
TU-12-130	84.00	240.00	156.00	0.4	31	1.0
including	188.00	189.05	1.05	5.0	804	21.1
including	237.20	240.25	3.05	2.1	177	5.6
TU-12-133	38.80	181.00	142.20	0.4	41	1.2
including	39.30	40.80	1.50	1.2	82	2.8
including	56.00	62.30	6.30	0.3	53	1.4
including	88.82	108.50	19.68	0.9	61	2.1
including	96.75	102.75	6.00	1.8	112	4.1
including	121.00	134.50	13.50	0.5	50	1.5
including	144.75	170.30	25.55	0.9	113	3.2
including	152.80	164.80	12.00	1.7	217	6.0
TU-12-133	199.20	200.20	1.00	0.8	110	3.1
TU-12-135	88.25	123.25	35.00	0.2	25	0.7
including	111.50	114.50	3.00	0.7	61	1.9
including	120.25	123.25	3.00	0.6	86	2.3
TU-12-135	146.65	162.50	15.85	0.8	79	2.4
including	146.65	149.05	2.40	1.1	75	2.6
including	154.15	155.15	1.00	5.6	596	17.6
TU-12-135	190.50	294.85	104.35	0.9	28	1.4
including	239.40	287.35	47.95	1.6	44	2.4
including	242.70	244.20	1.50	3.9	277	9.4
including	263.20	278.85	15.65	3.0	52	4.1
including	253.90	287.35	33.45	2.0	44	2.8
TU-12-135	335.00	371.85	36.85	0.3	7	0.5
including	349.50	354.23	4.73	1.3	24	1.8
TU-12-212	43.60	58.60	15.00	0.6	41	1.4
TU-12-212	67.70	84.75	17.05	2.3	31	2.9
including	74.20	76.20	2.00	16.1	97	18.0
TU-12-212	95.50	103.30	7.80	0.2	11	0.4
TU-12-212	116.20	124.60	8.40	0.3	65	1.6
TU-12-217	43.90	58.00	14.10	1.3	87	3.0
including	49.20	49.70	0.50	34.2	2050	75.2
TU-12-217	64.00	112.10	48.10	0.1	10	0.3
including	105.70	107.30	1.60	0.8	43	1.7
TU-12-217	132.70	161.65	28.95	0.4	34	1.0
including	142.00	147.80	5.80	1.1	109	3.3

Section 10525E
Looking NE (+/- 12.5m)

Gold Equivalent (AuEq) is calculated using silver to gold ratios of 50 to 1.
Scale:
4000
Date:

Hole ID	From (m)	To (m)	Interval (\mathbf{m})	Gold $(\mathbf{g} / \mathbf{t})$	Silver $(\mathbf{g} / \mathbf{t})$	Gold Eq $(\mathrm{g} / \mathbf{t})$
TU-12-140	36.90	95.00	58.10	0.5	7	$\mathbf{0 . 7}$
including	36.90	44.00	7.10	0.9	7	$\mathbf{1 . 0}$
including	91.00	95.00	4.00	1.0	38	$\mathbf{1 . 8}$
TU-12-140	146.80	187.00	40.20	0.3	14	$\mathbf{0 . 6}$
including	146.80	149.20	2.40	0.1	70	$\mathbf{1 . 5}$
including	160.00	160.60	0.60	0.2	214	4.5
including	163.40	165.80	2.40	0.7	39	$\mathbf{1 . 5}$
including	173.00	173.50	0.50	6.5	4	6.6
TU-12-143	27.42	79.70	52.28	0.5	5	$\mathbf{0 . 6}$
including	53.00	67.00	14.00	0.8	2	$\mathbf{0 . 9}$
including	59.00	63.50	4.50	1.1	2	$\mathbf{1 . 1}$
TU-12-145	39.00	102.50	63.50	0.4	4	$\mathbf{0 . 4}$
TU-12-145	151.00	170.00	19.00	0.7	369	8.1
including	153.40	164.40	11.00	1.1	581	12.7
including	153.40	169.00	15.60	0.8	444	9.7
including	157.60	164.40	6.80	1.1	861	18.3
TU-12-145	208.50	209.50	1.00	0.4	296	6.3
TU-12-145	223.80	271.70	47.90	0.8	41	$\mathbf{1 . 6}$
TU-12-151	54.00	74.00	20.00	0.2	7	$\mathbf{0 . 3}$
including	67.00	68.00	1.00	0.8	43	$\mathbf{1 . 6}$
TU-12-151	97.00	117.00	20.00	0.2	7	$\mathbf{0 . 3}$
including	114.00	117.00	3.00	0.3	13	$\mathbf{0 . 6}$
TU-12-151	126.25	131.50	5.25	0.3	2	$\mathbf{0 . 3}$
TU-12-184	90.00	104.00	14.00	0.4	6	$\mathbf{0 . 5}$
TU-12-210	51.82	109.80	57.98	0.3	5	$\mathbf{0 . 4}$
TU-12-210	120.00	148.00	28.00	0.2	54	$\mathbf{1 . 2}$
including	122.00	134.00	12.00	0.2	115	$\mathbf{2 . 5}$
TU-12-210	155.50	166.50	11.00	0.1	34	$\mathbf{0 . 8}$
TU-12-210	198.50	200.50	2.00	0.1	80	$\mathbf{1 . 7}$
TU-12-210	215.50	234.85	19.35	0.2	17	$\mathbf{0 . 5}$
TU-12-214	40.85	106.00	65.15	0.4	3	$\mathbf{0 . 4}$
TU-12-214	181.10	201.70	20.60	0.1	31	$\mathbf{0 . 8}$
including	193.25	195.50	2.25	0.1	145	$\mathbf{3 . 0}$
TU-12-214	209.50	218.60	9.10	0.1	13	$\mathbf{0 . 3}$
TU-12-214	228.50	307.50	79.00	0.2	70	$\mathbf{1 . 6}$
including	249.00	277.00	28.00	0.3	127	$\mathbf{2 . 9}$
including	261.60	275.00	13.40	0.5	215	4.8
including	269.50	272.00	2.50	0.9	902	18.9
including	286.50	298.20	11.70	0.2	119	$\mathbf{2 . 6}$
including	293.60	297.60	4.00	0.3	263	5.6
including	301.50	305.00	3.50	0.3	74	$\mathbf{1 . 8}$
TU-12-218	39.01	91.00	51.99	0.6	4	$\mathbf{0 . 6}$
including	69.00	80.00	11.00	1.0	2	$\mathbf{1 . 0}$

Hole ID	From (m)	To (m)	Interval (m)	$\begin{gathered} \text { Gold } \\ (\mathrm{g} / \mathrm{t}) \end{gathered}$	Silver (g/t)	$\begin{array}{\|c} \hline \text { Gold Eq } \\ (\mathrm{g} / \mathrm{t}) \\ \hline \end{array}$
TU-12-155	51.82	106.07	54.25	0.2	7	0.4
TU-12-155	194.00	212.00	18.00	0.2	22	0.6
including	199.80	204.50	4.70	0.3	35	1.0
TU-12-155	227.99	272.00	44.01	1.0	96	3.0
including	229.80	240.30	10.50	2.7	245	7.5
including	230.80	233.30	2.50	8.5	684	22.2
including	235.80	239.30	3.50	1.2	178	4.8
including	242.30	248.00	5.70	0.6	66	1.9
including	253.00	258.50	5.50	1.8	108	4.0
TU-12-155	334.80	337.70	2.90	0.9	90	2.7
TU-12-159	51.82	76.50	24.68	0.4	17	0.7
TU-12-159	240.50	299.60	59.10	0.6	53	1.7
including	240.50	250.00	9.50	1.2	101	3.2
including	244.00	246.50	2.50	3.1	233	7.8
including	270.00	299.60	29.60	0.8	69	2.1
including	271.50	287.55	16.05	0.9	90	2.7
including	273.00	276.50	3.50	0.8	91	2.6
including	280.00	283.05	3.05	1.3	89	3.1
including	286.05	287.55	1.50	2.0	233	6.7
including	295.60	298.10	2.50	1.7	141	4.5
TU-12-159	337.60	341.10	3.50	1.0	7	1.2
including	340.10	341.10	1.00	2.8	9	2.9
TU-12-162	51.82	71.80	19.98	0.4	1	0.4
TU-12-162	84.00	94.00	10.00	0.2	6	0.3
TU-12-162	250.50	319.00	68.50	1.2	37	1.9
including	263.50	314.50	51.00	1.5	42	2.3
including	264.50	280.00	15.50	2.4	71	3.8
including	264.50	268.00	3.50	5.2	125	7.7
including	293.50	301.00	7.50	2.3	47	3.2
TU-12-162	333.00	347.60	14.60	0.4	16	0.8
TU-12-166	54.25	69.00	14.75	0.5	2	0.5
TU-12-166	284.00	433.90	149.90	0.9	12	1.1
including	302.00	401.80	99.80	1.2	15	1.5
including	302.00	305.50	3.50	1.3	17	1.7
including	322.00	381.60	59.60	1.6	18	2.0
including	334.70	338.20	3.50	2.8	40	3.6
TU-12-215	70.30	111.60	41.30	0.5	4	0.6
TU-12-215	153.70	166.50	12.80	0.1	8	0.2
TU-12-215	473.50	491.30	17.80	0.7	36	1.4
including	476.50	488.30	11.80	0.9	50	1.9
TU-12-215	509.45	554.15	44.70	0.3	12	0.5
TU-12-221	71.70	113.30	41.60	0.7	4	0.8
including	73.20	78.10	4.90	2.6	5	2.7
TU-12-221	409.50	507.25	97.75	1.5	10	1.7
including	451.50	469.50	18.00	6.4	14	6.6
including	451.50	453.50	2.00	7.0	26	7.5
including	458.75	469.50	10.75	8.2	14	8.5
TU-12-221	520.25	523.75	3.50	0.2	11	0.4

Section 50000N
Looking NW (+/- 25m)

Gold Equivalent (AuEq) is calculated using silver to gold ratios of 50 to 1.
Scale: 1: $4000 \quad$ Date: $15-$ Nov-12

[^0]: Gold Equivalent (AuEq) is calculated using silver to gold ratios of 50 to 1 .

